Нейроромантизм

Самое интересное у вас в голове
gallery/butterfly-2049567__340
Мозг бабочек на порядки эффективнее искусственных нейросетей

     Ученые построили модель обонятельной системы бражника Manduca sexta. На небольшом количестве информации они смогли воспроизвести то, как насекомые обучаются в природе. При этом на обучение современных искусственных нейросетей требуется на порядки больше данных. Препринт с результатами работы опубликован на сервере arXiv.org.


      Искусственные нейросети с глубоким обучением могут хорошо распознавать образы на основе представленных в обучающей выборке. Однако, несмотря на название, эти системы существенно отличаются от естественных нейросетей животных. Соответственно, многие процессы, в том числе и обучение, по-видимому, происходят в них совсем по-разному. Это различие подтверждает тот факт, что эффективность обучения живых организмов (например, насекомых) и искусственных структур сильно разнится.
    В новой работе ученые построили компьютерную модель, которая воспроизводит структуру обработки обонятельной информации у бабочки. Она состоит из пяти модулей: 30 000 рецепторов, обонятельной доли мозга, грибовидного тела, бокового рога мозга и слоя внешних нейронов. Рецепторы считывают информацию о молекулах и передают сильно зашумленный сигнал. В обонятельной доле он усиливается. Считается, что клетки грибовидного тела хранят информацию о запахах. Боковой рог управляет нейронами в грибовидном теле. Внешние нейроны преобразуют сигнал в поведенческую команду, например, такую как «лететь направо».
    Эта система во многом отличается от искусственных нейросетей. Например, обонятельная доля представляет информацию в пространстве низкой размерности, в то время как грибовидные тела пользуются многомерным пространством параметров. В то же время все слои искусственных нейросетей обычно пользуются информацией одинаковой размерности. Кроме того, у насекомых иная система вознаграждения. Если бабочка получает искомый сигнал, нейромедиатор октопамин массово выбрасывается по всей обонятельной доле и грибовидному телу. Без этой системы обонятельного обучения попросту не происходит. Меж тем, у искусственных нейросетей обучение обычно происходит посредством обратного распространения ошибки, то есть передачи информации в обоих направлениях, чего не происходит в природе.
  Созданная авторами новой работы программа продемонстрировала все основные свойств обучения реальных насекомых, в частности, она преобразовывала зашумленный сигнал с рецепторов в однозначное указание действия на внешних нейронах. «Наша модель может надежно обучаться новым запахам и демонстрирует статистические свойства срабатывания нейронов, совпадающие с реальными», — говорят авторы статьи. Ученые надеются, что их работа позволит создать новые системы машинного обучения, способные обучаться на небольшом количестве примеров.

 

gallery/the-old-man-1998604__340

Ученые разрезали мозг долгожителей и выяснили, чем его обладатели отличаются от остальных людей. Открытие особых нейронов поможет понять секреты долгожительства и причины нейродегенеративных заболеваний.

Читать>>>

gallery/artificial-intelligence-3382507__340

В Гарвардском университете, провели исследование, показавшее, что перенёсший инсульт мозг можно «перепрошивать», а задачи, ранее выполнявшиеся поврежденными областями, могут быть делегированы здоровым отделам мозга.  Читать >>>

gallery/brain-20424__340

Можно ли в разы увеличить силу человеческого интеллекта и научиться использовать скрытые резервы человеческого мозга при помощи определённого образа жизни и некоторых лекарств? Некоторые уже поставили такой опыт на себе и назвали свою систему биохакингом. Читать >>>